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Abstract

Context : Testing techniques to ensure the quality of deep neural networks

(DNNs) are essential and crucial. However, the testing process can be inefficient

due to a large number of test cases and the manual effort of labeling them.

Recent work tackles the above challenge by selecting a small but representative

subset of the tests. Such an approach allows us to quickly estimate the accuracy

of a DNN with reduced effort, because only a small set of tests are to be manually

labeled. However, existing approaches cannot guarantee unbiased results or

provide an accurate estimation.

Objectives: In this work, we leverage a statistical perspective on providing an

unbiased estimation of the model accuracy with the smallest estimation variance,

named Stratified random Sampling with Optimum Allocation (SSOA).

Methods: Our approach first divides the unlabeled test set into strata based

on predictive confidences. Then, we design two stratum accuracy variance esti-

mation methods to allocate the given budget assigned to each stratum based on

the optimum allocation strategy. Finally, we conduct multiple experiments to

evaluate the effectiveness and stability of SSOA by comparing it with baseline

methods.

Results: The results show that SSOA significantly outperforms all compared

∗Corresponding author
Email addresses: wuzhuo@tju.edu.cn (Zhuo Wu), wangzan@tju.edu.cn (Zan Wang),

junjiechen@tju.edu.cn (Junjie Chen), youhanmo@tju.edu.cn (Hanmo You),
yanming@tju.edu.cn (Ming Yan), wang.lanjun@outlook.com (Lanjun Wang)

Preprint submitted to Information and Software Technology September 16, 2023



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

approaches with average improvements over 26.14% in terms of Mean Squared

Errors (MSE) of estimated accuracy. In addition, the MSE shows a steady

downward trend as the budget grows.

Conclusion: SSOA can assist testers in estimating the accuracy of DNNs,

lowering labeling costs, and enhancing the efficiency of DNN testing.

Keywords:

Deep Neural Network Testing, Test Input Selection, Test Optimization

1. INTRODUCTION

Deep neural network (DNN) has become an indispensable tool for a wide

range of applications such as image classification [1], speech recognition [2], and

natural language processing [3]. Like traditional software, DNN also contains

bugs, which might threaten human lives or properties in safety-critical scenar-

ios, e.g., autonomous driving [4], and thus must be adequately tested. However,

testing DNN-based software is different from traditional software because tradi-

tional software are programmed manually based on the business logic, whereas

DNNs are constructed based on a data-driven optimization process [5]. In gen-

eral, with the development of sensing technology, collecting sufficient amounts

of real-world test inputs is no longer a bottleneck. For example, we can easily

take millions of photos. However, labeling data to obtain the ground truth of

the images is tedious and expensive [6].

In order to reduce the cost of manual labeling, researchers have defined the

problem of DNN test input selection [7]. Specifically, this problem is to select a

subset of test cases under a given sample size budget and label the selected test

cases only to estimate the model performance (i.e., accuracy). We divide the

existing DNN test input selection methods into two categories, i.e., heuristic-

based approaches [8, 9] and sampling-based approaches [7, 10].

Heuristic-based selection methods [8, 9] usually use a specific criterion as

the optimization goal and then sample the test cases under budget constraints

to reach the corresponding goal with a greedy strategy. The limitations of
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heuristic-based methods are two-fold. Firstly, the estimation error of heuristic-

based methods may not decrease with the increasing budget. This is because

that fundamentally those samples selected by the greedy sampling strategy are

neither identical nor independent, and thus the law of large numbers cannot be

applied. As a result, the distribution of the selected test cases may not match

that of the original test set. For example, we conducted a pilot study on ResNet-

50 based on ImageNet with a budget of 50. The p-value of Kolmogorov-Smirnov

test [11] between the label distributions of samples selected by PACE [9] and

the original test set is 0.03 (less than 0.05), which demonstrates the inconsis-

tency between the two distributions. Secondly, existing heuristic-based selection

methods rely on the inner information from the model, e.g., neuron coverage [8]

and the output of the last hidden layer [9]. However, since the model is of-

ten considered a valuable property, and releasing inner information might cause

model inversion attacks and alike [12], such details are seldom released; thus,

black-box testing is considerably more practical.

Sampling-based selection methods [7, 10] do not have the above limitations.

However, sampling-based methods still suffer from other drawbacks. First, when

the number of samples is small, especially less than 100, the variance of the

accuracy estimation of the sampling-based selection methods is much higher

than those heuristic-based methods. Taking RestNet-50 trained by ImageNet as

an example, we evaluate the effectiveness of accuracy estimation with a budget

of 50. For PACE [9] (i.e., a heuristic-based approach), the square root of MSE

is 0.04, while for SRS [7] (i.e., a sampling-based approach), the square root of

MSE is 0.07. Second, existing sampling-based methods lost sight of theoretical

statistics analysis of test inputs (e.g., minimum estimation variance [7, 10]),

which is important in accuracy estimation [13].

To alleviate the above limitations, we propose a method called Stratified ran-

dom Sampling and the corresponding Optimum Allocation (SSOA) to solve the

test input selection task for DNNs. According to sampling theory [14], strat-

ified random sampling involves dividing a population into smaller groups

(a.k.a. strata). The optimum allocation is a procedure for assigning the
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sampling budget to each stratum. The allocation procedure is called “optimum”

because, in stratified random sampling, it produces the smallest variance for

estimating the mean of populations, which is the model test accuracy in the

test input selection task for DNNs, given a fixed budget. The end-to-end SSOA

approach contains five steps: 1) divide the large test set into strata; 2) com-

pute the stratum accuracy variance; 3) calculate the quota of each stratum; 4)

apply simple random sampling to obtain the corresponding quota in each stra-

tum; and 5) label selected samples and compute the overall accuracy estimation

by the weighted mean of strata sample sizes. In this procedure, there are two

main challenges. The first one is how to stratify the original test set into strata

to minimize the intra-group confidence variance and maximize the inter-group

variance. The second one is that the variance of the accuracy in each stratum

cannot be observed due to the lack of labels, but the optimum allocation relies

on it to obtain the budget assignment for each stratum.

Regarding the first challenge, we divide the whole test set based on the

predictive confidence of the DNN. Further, we propose two approaches to stratify

the test set into small groups. The first one is to cluster the tests such as the

intra-group confidence variance is small and the inter-group variance is large.

The second one is to stratify the test set based on pre-set rules due to the

prior knowledge of the confidence stratification in [7]. Regarding the second

challenge, we propose two ways to estimate the stratum accuracy variance. The

first one is to leverage training data as auxiliary information. However, the first

variance estimation method is based on the assumption that the training dataset

is accessible and the training dataset shares the distribution of the operation

dataset. In a case of either of these assumptions is not established, an alternative

approach, pre-sampling, is designed to estimate the stratum accuracy variance

by conducting simple random sampling and labeling of a small set of tests.

We compare SSOA with the state-of-the-art sampling-based test input se-

lection methods [7, 10] by the performance of accuracy estimation based on the

selected subset. Following previous studies [9, 10, 7], the evaluation metric is the

Mean Square Error (MSE) between the accuracy of the selected subset and the
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accuracy of the original large-scale test set. The experimental results demon-

strate that SSOA significantly outperforms all the four baseline methods (i.e.,

Simple Random Sampling [7], Cross Entropy-based Sampling [7], Confidence-

based Stratified Sampling [7], and DeepEST [10]) with an average improvements

across different budgets of 26.14%, 35.63%, 39.26%, and 48.62%, respectively.

Besides evaluating the feasibility of the solutions to the above two challenges, i.e.

stratification strategies and stratum accuracy variance estimation approaches,

we also illustrate that the stability of SSOA outperforms heuristic-based meth-

ods.

In summary, our contributions are as follows:

• We propose an unbiased DNN test input selection framework, SSOA,

based on stratified random sampling and optimum allocation. It achieves

the minimum estimation variance theoretically.

• We design stratification methods and stratum variance estimation meth-

ods to implement SSOA.

• We conduct experiments on five common scenarios to evaluate the ef-

fectiveness of SSOA. Meanwhile, we also show the stability of SSOA by

comparing it with heuristic-based methods. We have released the imple-

mentation of the framework on [15] for future usages.

2. Related Work

There are two main lines of related works, i.e., test input selection and test

input prioritization.

2.1. DNN Test Input Selection

Multiple test input selection techniques [7, 9, 8, 10] have been proposed to

solve this problem. In general, we categorize the existing methods into sampling-

based and heuristic-based methods.
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2.1.1. Sampling-based Selection

The simplest sampling-based test input selection method is simple random

sampling (SRS). SRS randomly selects the specified number of test inputs from

the original test set. The probability of each test input being selected is the

same. As a result, SRS is a method of unbiased sampling.

Li et al. [7] proposed two sampling-based selection methods, which are

Confidence-based Stratified Sampling (CSS) and Cross Entropy-based Sampling

(CES). CSS applies the method of stratified random sampling [14]. More details

of stratified random sampling will be introduced in Section 3.2. CSS first divides

the original test set into different strata according to their confidences. Then,

CSS is randomly sampled from each stratum according to a manually decided

fixed proportion. CES leverages the idea of clustering sampling [14]. More

specifically, CES conducts selection by minimizing the cross-entropy between

the selected set and the whole test set. According to [7], both CSS and CES are

unbiased.

Furthermore, Guerriero et al. [10] leveraged adaptive sampling to select in-

puts and proposed a test input selection method, DeepEST. Adaptive sampling

has also been used in the software reliability assessment task [16]. At each step,

DeepEST applies SRS with a fixed probability r and applies weight-based sam-

pling (WBS) with a probability 1−r. [10] provided four approaches to calculate

the weights. Besides, as observed in [10], WBS prefers to select the samples with

wrong predictions, which makes the estimated accuracy low. Thus, Guerriero

et al [10] propose to apply Hansen-Hurwitz [17] to correct the systematic bias in

sampling and obtained an unbiased estimator. DeppEST has a slightly different

goal, as it tries to improve the tradeoff between having unbiased low-variance

estimate with exposing more mis-predictions.

2.1.2. Heuristic-based Selection

Heuristic-based methods often start with a certain criterion as the optimiza-

tion goal, then select the least number of samples to meet the criterion through

a greedy strategy, and finally obtains the desired test inputs.
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However, heuristic-based methods do not consider whether the estimation is

unbiased, and thus their results provide no guarantee.

Chen et al. [9] proposed a cluster-based method, PACE. Specifically, PACE

first utilizes HDBSCAN [18] to cluster the original large-scale test set into several

groups representing different test capabilities. Then, PACE uses MMD-critic

[19] to select key test inputs which represent the cluster and performs adaptive

random selection [20] among the unique test inputs. Similarly, Zhou et al. [8]

proposed a two-phase heuristic-based method, DeepReduce. In the first stage,

DeepReduce uses structural neuron coverage criteria [21, 22] and the HGS [23]

algorithm to select a subset of test inputs. Then, DeepReduce designs to use

relative entropy (i.e., KL divergence) as a guide for the selection of test inputs

in the second stage.

2.1.3. Comparison Analysis

Compared with heuristic-based methods, sampling-based methods have three

major advantages: 1) based on existing sampling theory [14], unbiased test in-

put selection methods provide theoretical guarantees. Since the error of the

estimator is controllable, the generalization ability of sampling-based selection

is better than heuristic-based selection. 2) Owing to the law of large numbers,

when we use a sampling-based method for test input selection, the MSE be-

tween the estimated value of accuracy and the ground truth steadily decreases

as the sample size budget increases. However, for the heuristic-based method,

a lower MSE might be achieved with a small budget, and thus it is hard to

decide whether to fully use the given budget. More details can be referred to

Section 6.4. 3) The sampling-based selection can rely on the model outputs but

does not need to extract the output of the middle layer of the model as auxil-

iary information as in PACE [24] and DeepReduce [8], which indicates that the

sampling-based test input selection is a black-box process.

We focus on developing a sampling-based DNN test input selection frame-

work. More specifically, our study is based on stratified random sampling and

its optimum allocation, which will be introduced next.
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2.2. DNN Test Input Prioritization

Regarding test input prioritization, many approaches [5, 25, 26, 27, 28, 29,

30, 6, 31] based on the bug-revealing capability of test inputs have been proposed

to optimize DNN testing. Feng et al. [5] proposed DeepGini, a test prioritiza-

tion technique based on a statistical perspective of DNN. DeepGini borrowed

the idea of Gini impurity in information theory and applied it to the analysis of

deep neural networks. The main argument is that the more evenly the model

predicted an input as each class, the more possibly the model would misclassify,

indicating that test input is more likely to be a bug-revealing input. Wang et

al. [6] proposed PRIMA, a test prioritization technique based on mutation anal-

ysis. When testing resources are limited, priority execution of important test

cases can improve testing efficiency. PRIMA mutates the deep learning model

and test input separately. Then, PRIMA measures the degree of exploration

of the model and itself by the test input, finds test cases with a strong ability

to uncover errors, and ranks them at the front of the test sequence. Deep neu-

ral network software developers prioritize these top-ranked test inputs for final

testing. Shen et al. [31] proposed MCP, which improves the accuracy of the

DNN model by using test inputs near the decision boundary for retraining.

The main difference between test input prioritization and test input selection

is that test input selection is to make a precise estimate of the accuracy of the

model by selecting samples, and test input prioritization is to preferentially

select test inputs that will be predicted wrongly. Please note that the definition

of "Test input selection" mentioned in some papers is different from that in our

paper, and the goal of the task is also different [32, 33]. In these papers [32, 33],

the goal of "Test input selection" is the same as test input prioritization, which

is to select test inputs with strong bug-revealing ability.

3. PRELIMINARIES

In this section, we describe the problem of DNN test input selection. More-

over, we provide necessary background on stratified random sampling, which we
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will use in Section 4 to solve the problem.

3.1. Problem Formulation

Definition 1 (DNN test input selection). Given a trained DNN model M, and

an unlabeled test sample set S with N samples, the task of DNN test input

selection is to select a subset T, with a given size budget n < N , such that the

model test accuracy is accurately estimated by T.

Due to the huge manual effort required to label the whole test set S, the

ground-truth model test accuracy, denoted as θ, cannot be observed. The task

of test input selection aims to reduce the workloads by selecting a subset T.

We denote the model test accuracy estimated with the selected test cases T as

θ̂. The estimation error is measured using mean square error (MSE), which is

defined as:

MSE(θ̂) = E{(θ̂ − θ)2} (1)

The MSE can also be written as the sum of the variance of the estimator and

the squared bias of the estimator:

MSE(θ̂) = V ar(θ̂) +Bias2(θ̂) (2)

where V ar(θ̂) is the variance of the estimation and Bias(θ̂) is the system bias

of the estimation. If the estimator is unbiased, i.e. E{θ̂} = θ, then MSE and

variance are asymptotically equivalent.

3.2. Stratified Random Sampling and Optimum Allocation

In this study, we apply stratified random sampling and its optimum alloca-

tion to the task of test input selection.

In stratified random sampling [14], a full set S formed by N samples is

divided into L strata S1,S2, . . . ,SL having N1, N2, . . . , NL samples respectively.

These strata do not overlap, i.e. Sk ∩ Sl = ∅, k ̸= l and together form the full

set, i.e. ∪L
l=1Sl = S. In addition, there also is

∑L
l=1 Nl = N .

9
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Once the strata are defined, and given a sample size budget n, an indepen-

dent sample of size nl is selected from Nl samples in stratum Sl(l = 1, . . . , L)

such that ∀l, nl ≤ Nl, and
∑L

l=1 nl = n.

In this study, as Definition 1, the observation variable is the accuracy, thus

we define the accuracy on each sample x as

θ(x) =




1 x is correctly predicted

0 otherwise
(3)

Then the test accuracy on the full test set is defined as θ = 1
N

∑N
i=1 θ(xi). Mean-

while, the test accuracy on the l-th stratum is defined as θl =
1
Nl

∑Nl

i=1 θ(xi).

We select nl samples randomly to observe the accuracy, the estimation of test

accuracy on the l-th stratum is as:

θ̂l =
1

nl

nl∑

i=1

θ(xi) (4)

Since SRS achieves an unbiased estimation, there is E{θ̂l} = θl. Therefore, the

overall estimation θ̂ is the unbiased estimator of θ, which is:

θ =
1

N

L∑

l=1

Nlθl =
1

N

L∑

l=1

NlE{θ̂l} = E{θ̂} (5)

As the task of test input selection aims to obtain the minimum MSE of

the accuracy estimation as well as the estimator being unbiased, we only need

to obtain the minimum variance of the estimation based on Equation 2. Then,

according to [14], we achieve this goal by applying optimum allocation to choose

the sample size in each stratum, n1, n2, . . . , nL, which is:

nl = n
Nlσl

L∑
h=1

Nhσh

(6)

where σ2
l = V ar(θl) represents the variance of test accuracy on the l-th stratum.

4. APPROACH

The sampling-based approaches have been claimed to be more advanta-

geous than heuristic-based approaches in Section 2.1.3. However, the existing

10



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofUnlabeled 

Test Set

DNN Model

Prediction

1 2Stratification

𝑮𝒓𝒐𝒖𝒑𝟏Clustering 𝑮𝒓𝒐𝒖𝒑𝟐

𝑮𝒓𝒐𝒖𝒑𝒌 𝑮𝒓𝒐𝒖𝒑𝑳

Variance Estimation

𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆𝟏 𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆𝟐

𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆𝒌 𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆𝑳

Variance 
Estimation

3

Cluster 
Variance Optimum 

Allocation

𝑺𝒊𝒛𝒆𝟏 𝑺𝒊𝒛𝒆𝟐

𝑺𝒊𝒛𝒆𝒌 𝑺𝒊𝒛𝒆𝑳
Sampling Plan Random Sampling

𝑮𝒓𝒐𝒖𝒑𝟏 𝑮𝒓𝒐𝒖𝒑𝟐

𝑮𝒓𝒐𝒖𝒑𝒌 𝑮𝒓𝒐𝒖𝒑𝑳

Labeling Accuracy 
Estimation

Test Selection & Accuracy Estimation

𝜃

…… ……

…… ……

Figure 1: Overview of SSOA

sampling-based approaches [7, 10] do not utilize a more efficient allocation strat-

egy and can introduce vastly large variance with a small budget. Motivated by

this, we propose an unbiased test input selection framework based on Stratified

random Sampling and Optimum Allocation, called SSOA. More specifically, we

randomly sample test inputs from each stratum and adopt optimum allocation

to determine the sampling size, which has been proven optimal allocation [14].

Figure 1 presents the overview of our framework. Firstly, to keep the distri-

bution of the sampled test cases consistent with the distribution of the original

test set, we stratify the whole test set, so that similar test inputs are stratified

into the same group. Secondly, we obtain the accuracy variance of each stratum.

Thirdly, we use the optimum allocation to determine the number of samples to

select from each stratum based on Equation 6. Fourthly, we randomly sample

in each stratum according to the results of the optimum allocation to obtain

the final selected test set. Finally, we label the selected subset and estimate the

accuracy.

In the above process, two key questions must be answered:

1. How to stratify the whole test dataset S?

2. How to obtain the accuracy variance in each stratum, i.e. σl in Equation

11
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6?

To answer question 1), as our method is designed to work in a black-box

setting, we use the confidence of each test input as the basis for stratification.

Two stratification methods are proposed in Section 4.1, which are automatic

stratification by clustering and pre-set rules.

To answer question 2), since it is impossible to obtain the actual accuracy

variance in each stratum without labeling. We propose two methods to estimate

the accuracy variance in each stratum. The first method is to put training data

into strata and estimate the accuracy variance of each stratum based on the

training accuracy. The second method is pre-sampling, which is to randomly

select a small number of test inputs h for labeling to estimate the variance of

each stratum.

In this section, we first describe the stratification methods in Section 4.1,

and then present the variance estimation methods in Section 4.2. Then, we

summarize the usage of our SSOA in Section 4.3. Finally, we analyze that

SSOA provides an unbiased sampling.

4.1. Stratification

Based on the sampling theory [14], an effective stratification should partition

the samples such that the intra-stratum difference is minimized whereas the

inter-stratum difference is maximized. Since we assume that the model, and

its architecture, are unknown, we use the confidence as the index to divide the

group, where confidence of a test input is the largest value in the output layer of

the model. The confidence represents the credibility of the predicted label given

by the model. Test cases with high confidence are more likely to be predicted

correctly by the model, while test cases with low confidence are more likely to

be predicted wrongly [34, 35].

Next, we propose two stratification methods: automatic confidence interval

division by clustering and confidence interval bining based on experience. Both

of them can effectively distinguish test inputs with different test capabilities.

12
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The first stratification method is clustering. When the intra-stratum vari-

ance is small, and the inter-stratum variance is large, stratified random sampling

is effective. To achieve this goal, we adopt the K-Means algorithm [36] to clus-

ter all test inputs. There are two reasons to adopt the algorithm. Firstly, the

K-Means clustering algorithm assigns every sample a group; that is to say, none

of the samples are treated as the noise outside clusters. Alternative clustering

algorithms (such as HDBSCAN [18]) may leave behind some samples as noises.

Although we can assign the remaining samples into one stratum, the variance

of this stratum will be huge, which damages the performance of optimum al-

location. However,when we use K-means, the remaining samples are not all

assigned into the same group. Instead, each remaining sample will be divided

into as close a group as possible, and the variance of that group will still be

smaller than that of the group full of noises. Secondly, the K-Means algorithm

is a widely used and efficient clustering algorithm.

The second stratification method is stratification based on confidence. As

introduced, this rule-based setting option is inspired by the fact that CSS [7]

has used manually set dataset partition and achieved better performance than

SRS in most scenarios. However, as CSS does not apply optimum allocation,

its performance is not as good as SSOA, even with the same partition. More

detailed comparisons are elaborated in Section 6.2.

In addition, in the presence of corner cases on which human understanding

is more reliable, a rule-based division setting is more effective than clustering.

For example, suppose 50% of the test inputs have confidence as 1.0, rest of them

are distributed in the range of [0, 1); the clustering method inclines to cluster

the top 50% together with some other high confidence samples (e.g., more than

0.98) into one stratum. However, based on the effectiveness of the optimum

allocation, a better setting is to set a stratum only containing samples with

confidence 1.0. This is because the accuracy estimation of this stratum is 1,

and the accuracy variance estimation is 0; then, based on Equation 6, there is

no need to sample from this stratum. That is, the other strata can be allocated

more budgets and have better estimations.

13
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4.2. Variance Estimation

We use optimum allocation described in Section 3.2 to determine the number

of samples in each stratum. As shown in Equation 6, we need to calculate the

standard deviation (or variance) of the test inputs in each stratum. Then, we

can obtain the quantity that needs to be selected in each stratum. As described

in Section 3.2, this form of allocation is the optimal allocation, which has been

proven[14]. However, the original test inputs collected are unlabeled. Without

labels, the accuracy variance of the test inputs in each stratum cannot be cal-

culated. Thus, we propose two methods for estimating the accuracy variance of

each stratum.

In the first method, we leverage the corresponding training data as auxiliary

information to estimate the variance of each stratum. After determining the

strata, we put the training data into the corresponding stratum. Then we use

the variance of the training data to estimate the variance of the test data in the

stratum. Moreover, in Section 6.3, we use experiments to verify that there is no

significant difference between the variance of the training data and the variance

of the test data in the same stratum when the training set and test set are from

the same distribution. In a nutshell, the training data can be put into different

strata by two stratification approaches (mentioned in Section 4.1), clustering

and rule-based confindence setting, respectively.

For cluster stratification, we present the process of putting training data

into different strata in Algotithm 1. Specifically, C represent a list of L clusters

[C1,C2, . . . ,CL], where Cl is a set of test inputs in the l-th cluster, and Ψl is the

cluster centroid. C is the clustering result produced by cluster stratification.

Firstly, we create a new list E for stratifying training data, formed by L empty

set El (Line 1). For each training input d in D, we calculate its distance from

each cluster centroid Ψi Dist(d,Ψi), and we put it into the stratum to which

the cluster centroid closest to this training data belongs (Lines 2-5). Then, for

each stratum l, we calculate the accuracy variance of the training data in it

(denoted as σ̂2
l ) as the variance estimation (Lines 6-9).

For rule-based stratification, we first compute the confidence of all training
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Algorithm 1: Variance Estimation via Training Data
Input : C: a list of the clusters with the cluster centroids Ψi, i ∈ [1, . . . , L]

D: the training set

Output: Z: a list of the estimated accuracy variance in strata
/* Create a new list for stratifying training data */

1 E ← [E1,E2, . . . ,EL]

2 foreach d in D do

3 i← argmin
i∈[1,...,L]

Dist(d,Ψi)

4 Ei.append(d)

5 end

6 foreach El in E do

7 σ̂2
l ← the accuracy variance of El

8 Z.append(σ̂2
l )

9 end

10 return Z

data. Then, we put each training data into the corresponding stratum according

to the confidence.

However, as training data may not be accessible, as well as the scenarios

in which the distributions of training data and testing data are different, we

propose a second method to estimate the variance of each stratum by a step

of pre-sampling, which is to randomly select a small amount of data from test

inputs in each stratum. Specifically, we randomly sample h test inputs from each

stratum. After labeling these h test inputs, we calculate the accuracy variance

of these h test inputs as an estimate of the variance of this stratum. Next, we

use these estimated variances to calculate the optimal number nl of samples for

each stratum based on Equation 6. Finally, we randomly sample the stratum

with a size of nl − h. As a result, the final number of samples in each stratum

is still nl, and the sample size from the original test input set is still n.

4.3. Usage of SSOA

In this section, we present the usage of our approach, and Algorithm 2 shows

the high-level pseudocode of our DNN test input selection framework based on

15



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

stratified random sampling with optimum allocation.

Algorithm 2: SSOA
Input :M: the DNN model under test

S: the whole testing set, whose size is N

n: the number of selected test inputs from S

D: the training set (optional)

n_clusters: the number of clusters in the clustering stratification

(optional)

h: the number of pre-samples in the variance estimate (optional)

Output: T: a set of selected test inputs, whose size is n

1 T← ∅
2 Calculate the confidence of each test input in S with M
3 Stratification based on Section 4.1

4 foreach Sl in S do

5 σ̂2
l ← Estimate the accuracy variance of Sl based on Section 4.2

6 end

7 foreach Sl in S do
/* optimum allocation */

8 nl ← n · Nl·σ̂l∑L
h=1

Nh·σ̂h

/* simple random selection */

9 selectedInput ← SRS(Sl, nl)

10 T.add(selectedInput)

11 end

12 return T

The inputs include a DNN under test denoted as M, a whole test set denoted

as S whose size is denoted as N , a whole training set denoted as D, and a required

number representing the size of the small set of selected test inputs denoted as n.

When using clustering stratification (Line 3), we can set the number of clusters

n_clusters in the input. When estimating the variance using the pre-sampling

method (Line 5), we need to input the number of pre-sampled test inputs in

each stratum. Since both of our proposed stratification methods need to use

confidence as the basis for stratification, we first calculate the confidence of all
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test inputs (Line 2). Next, We stratify all test inputs through a stratifying

approach (e.g., rule-based stratification or cluster-based stratification), shown

in Line 3.

Then, we estimate the variance of each stratum through the information

from the training data or pre-sampling method (Lines 4-6). After determining

the stratification and variance estimation of each stratum, we select test inputs

in each stratum (Lines 7-11). We calculate the number of test inputs that should

be selected in each stratum by Equation 6 (Line 8). Finally, we randomly select

the specified number of test inputs in each stratum (Line 9). These selected

test inputs together form the final test subset. After completing the sampling

of each stratum, the estimation of the original whole test set can be calculated

through the sampled test inputs subset.

4.4. Analysis on Unbiasedness of SSOA

In this section, we analyze why SSOA is unbiased. Traditional stratified

sampling has been shown to be unbiased [14]. The main difference between

SSOA and original stratified sampling is that the stratum variance used to

determine the number of samples in each stratum (i.e., Equation 6) is not the

real stratum variance. As introduced in Section 4.2, we provide two estimation

approaches: by training data and by pre-sampling.

Next, we analyze the unbiasedness of these two approaches respectively. We

only use the training set to estimate the variance under the condition that the

training set and test set are independent and identically distributed [37] (a.k.a.

i.i.d., which is a common assumption in the machine learning). Due to the i.i.d.

property, variances of the training set and test set are equivalent, and so no bias

is introduced. When the i.i.d. condition is not established, we use pre-sampling

to estimate the variance. Please note that, some statistical methods can be used

to analyze the data feature distribution of the training data and the test data to

determine whether the i.i.d. condition is established in advance. To avoid bias

in pre-sampling, we apply SRS to select test data, where the estimation based

on SRS is unbiased. After the sampling number of each stratum is determined
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by Equation 6, we still execute SRS to obtain the specified number of test inputs

in each stratum, and as a result, the overall process is also unbiased.

5. Implementation

5.1. Datasets and DNN Models
Table 1: DNN models and datasets

ID Model Dataset #Classes #Trains #Tests Accuracy(%)

S1 CN-12
CIFAR-10 10 50,000 10,000

80.64

S2 VGG-16 93.75

S3 VGG-16 CIFAR-100 100 50,000 10,000 69.44

S4 VGG-19
ImageNet 1,000 1,200,000 5,000

71.46

S5 ResNet-50 75.14

In our experiments, we evaluate our approach and baseline approaches with

four model architectures and three publicly-available datasets. The details of

the datasets and models are shown in Table 1. For datasets, CIFAR-10 [38] is a

10-class ubiquitous object classification dataset. CIFAR-100 [38] is a 100-class

finer-grained object classification dataset. ImageNet [39] is a 1000-class large-

scale realistic object classification dataset. Since the original training set is too

large, in our experiments, we sample 50 images for each class in the original

training set when estimating variance with the training data. Furthermore,

since the test set of ImageNet has no labels, we randomly sample 5 images from

each class in the validation set, forming a test set of 5,000 images in total. For

models, CN-12 [40] represents a twelve-layer convolutional neural network. It

has six convolutional layers with a kernel size 3 × 3, three max-pooling layers

with 2 × 2 filters and stride 2, as well as three dropout layers with a dropout

rate of 0.5. The structure and training code of the model is the same as those of

[10]. We train the models ourselves with the code given by Guerriero et al. [41].

We use the pre-trained models VGG-19 and ResNet-50 provided by Keras [42].

Note that a recent study, DeepEST [10] also uses MNIST dataset, together

with CN-5 model and LeNet-5 model in the experiment. We do not consider
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them because these scenarios cannot show the effectiveness of different test input

selection methods. As reported in [10], comparing DeepEST with SRS under

the conditions that the model is CN-5 and the sampling size budget is 200,

the MSE of SRS and DeepEST are 3.6×10−5 and 1.5×10−5, respectively. By

considering the ground truth test accuracy is 0.993, the benefit from the better

test input selection method is very small. As a result, we consider more complex

datasets, CIFAR and ImageNet, as well as more well-known models, VGG and

ResNet, in our experiments.

5.2. Baseline Approaches

Regarding effectiveness, we compare our approach with four sampling-based

test selection methods SRS, CES[7], CSS[7], and DeepEST[10] as introduced in

Section 2.1.1. We chose these methods as compared methods in our experiments

because they are all designed for the same task. More importantly, sampling

techniques are used in these methods. Although neither CES nor DeepEST

have a sampling allocation strategy, there are fewer existing solutions to the

test input selection problem. More specifically, for DeepEST, which has four

variations, we implement DeepESTC as our baseline because it has the best

performance among all variants [10]. Regarding stability, we compare SSOA

with the heuristic-based selection method PACE [9].

5.3. Parameter Settings

For stratification methods, we adopt the implementations of the K-Means

cluster algorithm provided by sklearn [43]. The parameters in K-Means are

set as n_clusters to be 3 for all the subjects in our experiments. We also

investigate the impact of the n_clusters value in our selection framework. We

consider the n_clusters value to be 2, 3, 4, 5, and 6, respectively (presented

in Section 6.6). In the rule-based stratification method, we first rank all test

inputs in descending order of confidence. Then, we divide the first 80% with

the highest confidence in the test set into the first stratum. The middle 10% is
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the second stratum, and the last 10% is the third stratum. This stratification

setup is consistent with CSS [7].

The number of pre-selection h in each stratum is a hyperparameter of the

variance estimation methods. In a nutshell, the setting of h can influence the

performance of variance estimation. If h is too small, it can lead to imprecise

variance estimation; however, if h is too high, it indicates that the number of

test inputs used in optimum allocation is less, which indicates SSOA degrades

to random sampling. Thus, we have to choose a proper setting of h due to the

actual sampling budget. In our experiments, as the minimum sample budget is

50, we set h as 10 to achieve both an accurate variance estimation and enough

space to apply optimum allocation.

5.4. Hardware and Runtime Environments

We implement our methods using Python and train all DNN models based

on Keras 2.7.0 with TensorFlow 2.4.1. Our experiments are conducted on the

Intel Xeon Silver 4214 machine with 256GB RAM, Ubuntu 18.04.4. All the code

and data in our work are available at the project homepage [15].

6. Evaluation

In this section, we address the following research questions:

• RQ1: Compared with baselines, how does SSOA perform?

• RQ2: Does optimum allocation contribute to SSOA?

• RQ3: Is the variance of each stratum estimated by the training data and

pre-sampling consistent with the variance of the original test data in each

stratum?

• RQ4: Does SSOA perform more stability than the heuristic-based selection

methods?

• RQ5: Is SSOA still effective when the test and training data are from

different distributions?
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• RQ6: How does n_clusters influence the performance?

6.1. Effectiveness of SSOA (RQ1)

Setup. As we propose two methods for stratification (Section 4.1) and

two methods for variance estimation (Section 4.2), in subsequent experiments,

SSOA framework specifically has four implementations SSOA-R-T, SSOA-C-

T, SSOA-R-P, and SSOA-C-P, where R represents the Rule-based stratifi-

cation and C represents the Cluster stratification; meanwhile, T represents the

variance estimation via Trainning set, and P represents the variance estimation

via Pre-sampling.

To answer RQ1, we utilize the Mean Squared Errors (MSE) to evaluate the

effectiveness of the test selection methods as in the previous studies [7, 10, 9].

The smaller MSE, the more precise the model accuracy is estimated, which

means that the corresponding selection method is more effective. Due to the

randomness in the sampling-based methods, we repeat all experiments K times

under different selection budget n. As a result, MSE can be calculated as:

MSE(âcc) =
1

K

K∑

i=1

(âcci − acc)2 (7)

where ˆacci is the estimated accuracy at the i-th repetition and acc is the actual

accuracy of the original large-scale test set on the corresponding model. In the

experiments, as [7], we set K as 50. In addition, since the value of MSE is too

small to be observed easily, still the same as [7], we normalize the results as the

square root of MSE. Specifically, we first use each sampling-based test selection

method to select a subset of test inputs, under the size budget n ranging from 50

to 200 with an interval of 10. Then, we use the selected test samples to calculate

the overall accuracy estimation. For the same selection number n, we obtain K

estimated values âcc. Finally, we use Equation 7 to evaluate the effectiveness

of the test input selection method.

Results. In order to illustrate the performance clearly, we separate our four

SSOA methods into two groups to compare with baselines based on the stratum

variance estimation. The resutls from Table 2 and the first row of Figure 2 are
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related to stratum variance estimation by training data. Meanwhile, the results

from Table 3 and the second row of Figure 2 are related to stratum variance

estimation by pre-sampling.

Figure 2 demonstrates the effectiveness of methods at selected sample bud-

gets from 50 to 200. This figure shows that SSOA-R-T and SSOA-C-T outper-

form baseline methods overall.

To further analyze the results, we also sum up average improvements in

Table 2. Given a budget, a baseline method and an SSOA method, the rel-

ative improvement is (
√
MSEbaseline −

√
MSESSOA)/

√
MSEbaseline, where

√
MSEbaseline and

√
MSESSOA are the corresponding results from Figure 2.

The reported average improvement is the average over different budgets. We

also detect the significant difference between our selection method and other

baselines. A one-sided sample Wilcoxon signed-rank test [44] is applied to check

whether our selection framework outperforms other compared methods. In Ta-

ble 2, the bold values indicate that our selection framework outperforms the

compared methods with the significance level as 0.05.

Table 2: Average improvements across budgets from 50 to 200 of SSOA-R-T and SSOA-C-T

over baselines (%)

App.
SSOA-R-T SSOA-C-T

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

SRS 16.10 45.91 6.47 30.63 28.63 13.87 17.32 13.31 34.20 30.50

CES 18.56 57.49 34.79 31.84 32.79 16.87 34.59 40.36 34.88 34.91

CSS 38.73 31.69 38.96 38.62 51.55 37.69 -2.91 43.06 41.93 52.97

DeepEST 0.18 57.79 34.90 75.21 73.93 -2.38 35.73 39.69 76.44 74.30

* S1:{Model: CN-12, Dataset: CIFAR-10}; S2:{Model: VGG-16, Dataset: CIFAR-10}; S3:{Model: VGG-16, Dataset:

CIFAR-100}; S4:{Model: VGG-19, Dataset: ImageNet}; S5:{Model: ResNet-50, Dataset: ImageNet}.

For S1, we observe that DeepEST and SSOAs have comparable performance,

and much better than the other baselines. According to Table 4, we understand

even passed the hypothesis test, the stratum test accuracy variance estimations

of S1 are not precise by training data. Therefore, the primary factor contributing

to the absence of advantages in S1 for SSOAs, when compared to DeepEST, is

the inadequate accuracy of variance estimation. For S2, SSOA-R-T outperforms

22



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of0.02

0.04

0.06

0.08

0.10

Sq
ua

re
 R

oo
t o

f M
SE

S1
SRS
CES
CSS
DeepEST
SSOA-R-T
SSOA-C-T

0.01

0.02

0.03

0.04

0.05
S2

0.04

0.06

0.08

0.10

0.12
S3

0.05

0.10

0.15

S4

0.025

0.050

0.075

0.100

0.125

0.150
S5

50 100 150 200
Sample Size

0.02

0.04

0.06

0.08

0.10

Sq
ua

re
 R

oo
t o

f M
SE

SRS
CES
CSS
DeepEST
SSOA-R-P
SSOA-C-P

50 100 150 200
Sample Size

0.01

0.02

0.03

0.04

0.05

50 100 150 200
Sample Size

0.02

0.04

0.06

0.08

0.10

0.12

50 100 150 200
Sample Size

0.05

0.10

0.15

50 100 150 200
Sample Size

0.025

0.050

0.075

0.100

0.125

0.150

Figure 2: Estimation performance under budgets from 50 to 200 by comparing SSOA-R-T,

SSOA-C-T, SSOA-R-P and SSOA-C-P with baselines (the first row of diagrams: the results

of SSOA-R-T and SSOA-C-T; the second row of diagrams: the results of SSOA-R-P and

SSOA-C-P).

the all compared methods. Meanwhile, although SSOA-C-T is much better

than the other baselines, it is only comparable with CSS. The reason for such

comparable result is the clustering method does not achieve a high quality of

stratification on S2, because the average improvement of SSOA-R-T over CSS

is quite huge as shown in Table 2. For S3, obviously SSOA-R-T, SSOA-C-T, as

well as SRS perform better than the other three baselines, as shown in Figure

2. The experimental results from [10] are the same, i.e., SRS is better than

DeepEST in the same scenario. Furthermore, as illustrated in Figure 2, SSOA-

C-T outperforms SRS in 76.47% (13 out of 17) sampling size budgets in the

range from 50 to 200. For S4 and S5, SSOA-R-T and SSOA-C-T perform better

than the other baselines. This shows that SSOAs are also effective on complex

datasets and models. Furthermore, as shown in Figure 2 and Table 3, the trend

of SSOA-R-P is consistent with that of SSOA-R-T, and the trend of SSOA-C-P

is similar to that of SSOA-C-T.

In addition, by comparing stratification methods based on Tables 2 and 3,

the clustering stratification method (C) performs worse than the rule-based set-

ting (R) in S1 and S2, but better in S3, S4 and S5. This indicates that even

though the same allocation method and the same variance estimation method

are used, the stratification method affects the final selection. Furthermore, we

observe that the SSOA is more effective in the cases: 1) The variance differences

among strata are large. For example, the performance of SSOAs with rule-based
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Table 3: Average improvements across budgets from 50 to 200 of SSOA-R-P and SSOA-C-P

over baselines (%)

App.
SSOA-R-P SSOA-C-P

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

SRS 28.71 58.20 22.51 29.20 21.62 11.06 18.10 22.04 36.46 38.00

CES 31.04 67.97 45.49 30.31 26.06 13.32 33.98 47.37 38.16 41.74

CSS 47.78 48.06 49.13 36.74 47.12 35.50 -3.15 49.29 44.32 58.12

DeepEST 14.14 67.93 45.81 74.43 71.62 -5.72 36.76 46.45 77.71 77.42

* S1:{Model: CN-12, Dataset: CIFAR-10}; S2:{Model: VGG-16, Dataset: CIFAR-10}; S3:{Model: VGG-16, Dataset:

CIFAR-100}; S4:{Model: VGG-19, Dataset: ImageNet}; S5:{Model: ResNet-50, Dataset: ImageNet}.

stratification on S2 is better than those of S1 and S3, and the improvements

relative to baselines are more than 30%. The reason is that after rule-based

stratification on S2, the ground truth test variances of the three strata are 0.49,

0.34, and 0.09, respectively. It can be seen that the variances in strata are

significantly different. 2) When the sample sizes in each stratum are appropri-

ate (not too many or too few). For example, the performance of SSOAs with

clustering stratification on S3 is better than that of S1 and S2. Comparing the

stratum sample sizes of S3 and S2, the number of test inputs in each stratum in

S3 is 7261, 1531, and 1208, respectively, meanwhile the number of test inputs

in each stratum in S2 is 9250, 438, and 312, respectively. The first stratum of

S2 occupies over 90% samples in the test set.

Answer to RQ1: SSOA outperforms all the baseline approaches in most

cases (i.e., 93.75% cases). Therefore, SSOA is a more reliable choice for

DNN test input selection.

6.2. Effectiveness of Optimum Allocation (RQ2)

Setup. We implement the rule-based stratification same as CSS [7], as

introduced in Section 5.3. Then their difference is only related to the allocation

method, where CSS manually allocates the sampling ratio of each stratum,

while SSOA-R uses the optimum allocation method as Equation 6 to allocate

the sampling ratio of each stratum. Like RQ1, the MSE is used as the index to

compare the effectiveness.
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Results. Our proposed test input selection method is built on the optimum

allocation of stratified sampling. We investigated the contribution of optimum

allocation by comparing the effectiveness of CSS with SSOA-R-T and SSOA-

R-P, since the rule-based stratification settings in SSOA-R-T and SSOA-R-

P are the same as CSS, except the allocation method. That is, in CSS, the

number of samples for each stratum is manually set through experience, while

in SSOA-R-T/SSOA-R-P, the number of samples for each stratum is calculated

by Equation 6. The comparison results are in Figure 2. We observe that both

SSOA-R-T and SSOA-R-P outperform CSS on all sample size budgets in all five

scenarios.

Answer to RQ2: The optimum allocation contributes to the selection

framework. Therefore, SSOA can both save the manual effort in tuning

hyperparameters used in CSS and gain the optimal sampling results when

given the specific stratification.

6.3. Feasibility of Variance Estimation (RQ3)

Setup. To answer RQ3, for each experiment scenario, we separately record

the estimated variance of training data, the estimated variance of pre-sampling

and the actual variance of test data in each stratum. A paired sample Wilcoxon

signed-rank test [44] is applied to check whether the estimated variance is

matched with the actual variance in each stratum. During the hypothesis test,

we input the estimated variances and the actual variances from the test data,

and then calculate the p-value. Finally, we judge whether to accept the hy-

pothesis, that is, whether there is no significant difference between the variance

estimated by our methods and the actual variance of the test data in each stra-

tum. In our experiments, the significance level of the test is set as 0.05. In

addition, we have conducted experiments on both two stratification methods

through the above steps.

Results. From Table 4, we can observe that it is feasible to estimate the

variance by the training data and pre-sampling data. More specifically, all the p-
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value in Table 4 are greater than 0.05 and some of them are even 1. Thus, we can

conclude that there is no significant difference between the estimated variance

(i.e., by the training data and the pre-sampling data) and the variance of the

test data, which demonstrates the feasibility of leveraging estimated variance to

represent the actual variance of test data.

Table 4: Significant difference test for estimated variance and actual variance in the same

stratum

Strat.
Training Pre-sampling

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

Rule-based 0.423 0.181 0.789 1.0 0.789 0.789 1.0 0.423 0.789 0.789

Cluster 0.423 0.181 0.789 0.423 0.423 0.423 1.0 0.423 0.181 1.0

* S1:{Model: CN-12, Dataset: CIFAR-10}; S2:{Model: VGG-16, Dataset: CIFAR-10}; S3:{Model: VGG-

16, Dataset: CIFAR-100}; S4:{Model: VGG-19, Dataset: ImageNet}; S5:{Model: ResNet-50, Dataset:

ImageNet}.

Answer to RQ3: Leveraging the estimated variance to represent the

actual variance is feasible since there is no significant difference between

them.

6.4. Stability Comparison (RQ4)

Setup. To answer RQ4, we expand the number of samples to 4000 in the five

experimental scenarios. For SSOA, we use the implementation of SSOA-R-T to

illustrate the stability. The performance of SSOA-R-T with a size budget of up

to 4000 is compared with a typical heuristic-based method, PACE. We also use

SRS as a reference. The same as RQ1, the MSE is used as the index to compare

the effectiveness.

Results. It is also interesting to investigate the stability of the DNN test

input selection methods, including heuristic-based as introduced in Section 3.

We compare the stability of SRS, SSOA-R-T and one heuristic-based method,

PACE, by sampling from 50 to 4000, whose results are shown in Figure 3. For

S1, we observe that the MSE of the accuracy estimated by PACE increases when

the number of samples is greater than 2500. For S3, we also observe that the
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MSE of the accuracy estimated by PACE increases when the number of samples

exceeds 3000. Although the heuristic-based sampling method PACE can achieve

extremely small estimation errors at certain budget, PACE’s performance is not

stable, and it is nontrivial, if not impossible, to estimate which sample size

the PACE performs well. However, sampling-based selection methods present a

steady downward trend with increasing budget sizes.
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Figure 3: Comparison of heuristic-based selection and sampling-based selection.

Answer to RQ4: Our method is more stable than the heuristic-based

selection methods. In practice, for SSOA, to fully utilize the sample size

budget can obtain the optimal estimation. However, for heuristic-based

methods, like PACE, to determine the selected sample size within the

budget for the best performance is critical but tricky.

6.5. Effectiveness on Different Distributions (RQ5)

Setup. In some real-world scenarios, the test and training sets are not col-

lected under the identical and independent condition. We follow the existing

work [9] to construct test and training sets from different distributions by in-

troducing adversarial test inputs. In the experiments, we use three methods for

adversarial sample generation, which are C&W (Carlini&Wagner) [45], FGSM

(Fast Gradient Sign Method) [46] and BIM (Basic Iterative Methods) [47].

These three adversarial sample generation methods have been widely used in the

existing works [29, 22]. We keep 5000 test inputs from the original test set and

apply the adversarial example generation method on the rest 5000 test inputs,

which is to construct a new combined test set for S2 and S3, respectively. Since

test and training sets are from different distributions, we cannot use the train-

ing data to estimate the variance of each stratum. As a result, we compare two
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SSOA implementations based on pre-sampling variance estimation, SSOA-R-P

and SSOA-C-P, with baselines on those new combined test sets. In addition,

the same as RQ1, the MSE is used as the index to compare the effectiveness.

Results. From Figure 4, we observe that the overall MSE is higher than

that of Figure 2. This shows that it is more difficult to precisely estimate the

accuracy of the test set whose distribution is different from training because the

model is not designed for such test scenario. Furthermore, Figure 4 also shows

that compared with the baselines, SSOA-R-P and SSOA-C-P perform better.

This demonstrates that SSOA is still effective when the test and training data

are from different distributions. In particular, SSOA-C-P performs better than

SSOA-R-P. The reason is that with adversarial samples, the distribution of con-

fidence in the new combined test set differs from the original test set. As a

result, the previously manually divided stratification [7] is not the most reason-

able. Therefore, when the test and training sets are from different distributions,

SSOA-C-P is the proper implementation.
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Figure 4: Square root of MSE under the combined test set.

Answer to RQ5: SSOA is still effective when the test and training data

are from different distributions. Furthermore, SSOA-C-P is the proper

implementation.
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6.6. Imapct of Different n_clusters Value on SSOA (RQ6)

Setup. We design the experiment protocol as follows. We first run SSOA-C-

T and SSOA-C-P with different n_clusters values, ranging from 2 to 6 with the

interval of 1, to select test inputs under different sizes, respectively. We then

calculated the square root of MSE for SSOA-C-T and SSOA-C-P with each

n_clusters value. Finally, we show the selection results of different n_clusters

values.

Results. We investigate the impact of different n_clusters values, whose

results are shown in Figure 5. The line graph shows the square root of MSE at

each sampling number for different n_clusters settings in different scenarios.

Here, we study five different n_clusters. For SSOA-C-T, Figure 5 shows that

different n_clusters have little effect on the results, which indicates that SSOA-

C-T is not sensitive to the setting of n_clusters. The CSS [7] manually divides

the test set into three strata. Therefore, for comparison with CSS [7], we use

a consistent stratifying setting as n_clusters = 3. For SSOA-C-P, for different

scenarios, the best and worst n_clusters settings are different, probably because

SSOA-C-P has more uncertainty in pre-sampling than SSOA-C-T. We observe

that a smaller n_clusters usually indicates better performance than the larger

one. This is because the larger the number of clusters is set, the larger the

number of samples for pre-sampling is required. With the same size budget,

there is not much space for sampling after estimating the variance. Meanwhile,

we observe that the n_clusters =3 performs better among all the n_clusters

values.
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Figure 5: Square root of MSE under n_clusters from 2 to 6.
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a reasonable choice, and achieves the best effectiveness among all the

studied n_clusters values in general.

7. Discussion

7.1. Scalability of SSOA

To check the capability of SSOA, Figure 6 illustrates the budget size up

to 1000. These experiments are designed for some complex scenarios (e.g.,

extremely large-scale dataset to label) and sufficient budgets. The results show

that due to the law of large numbers, the square root of MSE of all four SSOA

methods are steadily decreasing while the budget increases. It further proves

the stable effectiveness of SSOA when facing higher budgets.
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Figure 6: Square root of MSE under budgets from 50 to 1000.

7.2. Application Domain of SSOA

Table 5: Effectiveness comparison among SSOA-C-P, SRS, and CES in terms of the average

MSE values (%) by taking two DNN regression models (i.e., Dave-orig and Dave-drop) with

the testing set Driving as examples

Model. App.
Number of selected test inputs

50 60 70 80 90 100 110 120 130 140 150 160 170 180

Dave-orig

SRS 2.894 3.215 2.812 2.136 3.941 2.011 0.834 0.822 1.440 0.820 1.384 1.746 1.563 1.353

CES 1.599 1.344 1.220 1.195 1.101 1.013 1.066 1.082 1.022 0.975 1.011 1.022 0.949 0.879

SSOA-C-P 1.066 1.656 0.864 1.140 0.672 0.607 0.702 0.749 0.852 0.663 0.756 0.357 0.726 0.653

Dave-drop

SRS 1.647 1.469 1.398 1.293 1.143 1.083 1.012 1.027 0.991 0.999 0.991 0.941 0.831 0.799

CES 1.572 1.511 1.311 1.181 1.077 1.037 1.011 0.973 0.869 0.852 0.795 0.747 0.729 0.702

SSOA-C-P 0.323 1.131 0.860 0.800 0.826 0.769 0.551 0.627 0.811 0.503 0.751 0.113 0.258 0.343

In our study, we evaluated the performance of SSOA in the domain of normal

image classification. It is actually also interesting to investigate the effectiveness
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of SSOA in regression tasks. Here, we conducted an experiment by taking two

DNN regression models (i.e., Dave-orig and Dave-drop [48]) with the testing set

Driving to investigate it, whose results are shown in Table 5. The input of the

two models Dave-orig and Dave-drop is the image captured by the camera on

the driving vehicle, and the output is the predicted steering wheel angle. The

Driving dataset [49] is the Udacity self- driving car challenge dataset contain-

ing 101,396 training and 5,614 testing examples. Dave-orig and Dave-drop are

trained on the Driving datasets following the setup of [7]. Since the regression

model does not have a confidence output, we cannot apply confidence rules for

stratification, but we can use clustering stratification. Therefore, we use SSOA-

C-P for test input selection on the regression task. Please note that, what we

proposed is the test input selection framework. We can choose the applicable

variant according to the usage scenario, and the previous experiment (RQ1) has

also proved that all four variants are effective. Since CSS and DeepEST were

not applied to the regression model in [7, 10], we only show the results of SRS,

CES, and SSOA-C-P. We repeated the experiment 50 times for each method

on each sample size. In the table, we highlighted the most effective approach

(i.e the lowest MSE) for each number of selected test inputs. From Table 5,

for all the 28 cases (2 subjects * 14 settings for the number of selected test

inputs), SSOA performs the best in 96.43% (27 out of 28) cases. The results

demonstrate that, regardless of classification task or regression task, SSOA is

able to outperform all the compared approaches.

7.3. Future Works of SSOA

Our experiments have demonstrated that SSOA achieves great effectiveness

for estimating the accuracy of the whole testing set by selecting a small number

of test inputs. There are some possible directions to further improve SSOA.

First, in our study we evaluated the performance of SSOA in the input form

of normal image. In the furture, we will try to extend SSOA to multimodal

input scenarios, for example, speech, text, etc.

Second, the primary objective of SSOA is to accurately estimate the overall
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accuracy of the entire testing set, which constitutes a single-objective problem.

However, in practical applications, there exist several additional objectives that

need to be fulfilled, such as maintaining the same coverage as the entire testing

set. In the future, we plan to extend SSOA to solve the problem of test input

selection with multiple objectives.

Third, in SSOA-C the K-Means algorithm is adopted to perform clustering

due to several reasons presented in Section 4.1. However, there are other cluster-

ing algorithms that meet the requirements mentioned in Section 4.1, and even

some that do not require a pre-set number of clusters, such as Affinity propa-

gation clustering. In the future, we may explore other clustering algoritms.

Fourth, SSOA involvers several parameters, such as the clustering param-

eters and the the number of pre-sampling h. For different subjects, the best

parameter values may be different, and thus in the future we plan to propose

to set the parameter value dynamically by considering the characteristics of the

used subject.

7.4. Threats to Validity

The internal threat to validity mainly lies in the implementations of SSOA

and baselines. To reduce this threat, we adopted implementations of baselines

released by the authors, implemented SSOA based on some existing libraries

(presented in Section 5), and carefully checked the code of our approach SSOA

and experimental scripts.

The external threats to validity mainly lie in the DNN models and the test

sets. For DNN models, we adopted the models trained based on popular datasets

(including CIFAR-10 and CIFAR-100). To reduce the threats from DNN models

and test sets, we considered using models and datasets widely-used in existing

research [10]. Since SSOA can work with all kinds of inputs (e.g., text, voice),

we consider extending SSOA to more domains in our future work.

The construct threats to validity mainly lie in the parameters in SSOA and

the randomness in our study. SSOA involvers several parameters, such as the

clustering parameters n_cluster and the the number of pre-sampling h. Re-
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garding the clustering parameters, we set the number of clusters to be consis-

tent with [7] and used the same parameters for all the scenarios. Meanwhile,

we conducted a study to evaluate the impact of different clustering parameter

n_cluster, and the results demonstrate that the default setting (i.e., 3) is a

good choice (presented in Section 6.6). Moreover, K-means is a commonly used

clustering algorithm. Researchers in the field of data mining have also proposed

some methods for determining the optimal number of clusters, which can also

be applied to our test input selection framework. For example, the classical

knee method [50], search-based method, contour coefficient method, etc [51].

Regarding the number of pre-sampling h, we set this parameter based on the

test budget in our experiments and used the same setting for all the subjects.

Moreover, we provide guidance on parameter h settings in the second paragraph

of Section 5.3, i.e. how to adjust parameter h settings when the test budget

changes. We presented the specific settings of the parameters in Section 5. To

reduce the threat of randomness involved in our study (including SSOA and four

baselines), we repeated each of them 50 times and calculated the effectiveness

by Equation 7.

8. Conclusion

We integrate sampling theory into the task of deep learning test input selec-

tion and propose an unbiased test input selection framework based on stratified

random sampling and optimum allocation, called SSOA. Experimental results

demonstrate that SSOA is more effective than the state-of-art sampling-based

selection methods. Besides, the experiment results also show that SSOA pro-

vides a reliable estimation of the model performance. These observations indi-

cate that to make fully use of the budgets by SSOA can obtain an effective and

reliable estimation of the model performance in practice.
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